Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
BMC Genomics ; 25(1): 94, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262950

RESUMO

The cuttlefish, Sepia pharaonis, is characterized by rapid growth and strong disease resistance, making it an important commercially farmed cephalopod species in the southeastern coastal regions of China. However, in the reproductive process of S. pharaonis, there are challenges such as a low output of eggs, poor quality, and low survival rates of newly hatched juveniles. Therefore, there is an urgent need to study the molecular mechanisms underlying ovarian development in this species. In this study, we conducted the first transcriptomic analysis of the ovary at four developmental stages: the undeveloped stage, developing stage, nearly-ripe stage, and ripe stage, and compared the transcriptomics among these four stages using Illumina sequencing technology. The total numbers of clean reads of the four stages ranged from 40,890,772 to 52,055,714 reads. A total of 136,829 DEGs were obtained, GC base ratios of raw data were between 38.44 and 44.59%, and the number of uniquely mapped reads spanned from 88.08 to 95.90%. The Pearson correlation coefficient demonstrated a strong correlation among different samples within the same group, PCA and Anosim analysis also revealed that the grouping of these four stages was feasible, and each stage could be distinguished from the others. GO enrichment analysis demonstrated that ovarian follicle growth, sex differentiation, and transforming growth factor beta receptor, played a foreshadowing role at the early ovarian development stage, and the terms of small molecule metabolic process, peptide metabolic process, and catalytic activity were prominent at the mature stage. Meanwhile, KEGG analysis showed that the early ovarian development of S. pharaonis was mainly associated with the cell cycle, DNA replication, and carbon metabolism, while the mid-late ovarian development was involved with the signal transduction, endocrine system, and reproduction pathway. RT-qPCR further confirmed the consistent expression patterns of genes such as 17ß-HSD, GH, VGS, NFR, and NYR in the ovaries of S. pharaonis, exhibiting elevated levels of expression during the maturation stage. Conversely, ER and OM exhibited high expression levels during the early stages of ovarian development. These transcriptomic data provide insights into the molecular mechanisms of S. pharaonis ovarian development. The findings of this study will contribute to improving the reproduction and development of cuttlefish and enriching the bioinformatics knowledge of cephalopods.


Assuntos
Sepia , Transcriptoma , Feminino , Animais , Decapodiformes , Ovário , Perfilação da Expressão Gênica
2.
Biol Trace Elem Res ; 202(2): 743-753, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37266897

RESUMO

The objective of this research was to examine and contrast the levels of cadmium (Cd), copper (Cu), zinc (Zn), and selenium (Se) in the muscle and hepatopancreas tissues of two species, namely pharaoh cuttlefish (Sepia pharaonis) and Indian squid (Uroteuthis duvauceli), from the Persian Gulf. A total of thirty individuals of each species were gathered in January 2009 from the northern waters of the Persian Gulf. The metal concentrations were significantly higher in muscle tissue (p < 0.05) than in other tissues. S. pharaonis had higher metal concentrations than U. duvauceli. In the muscle and hepatopancreas samples of S. pharaonis, the highest mean concentrations were found to be for Zn (58.45 ± 0.96 µg/g dw) and Cu (1541.47 ± 192.15 µg/g dw), respectively. In U. duvauceli, the highest concentration of measured elements was seen for Zn in both muscle (36.52 ± 0.56 µg/g dw) and hepatopancreas (60.94 ± 2.65 µg/g dw). Se had the lowest concentration among the elements measured in both species. There was a negative and significant correlation between Cu and biometrical factors (total body length and weight) in both muscle and hepatopancreas samples of S. pharaonic and only in the muscle samples of U. duvauceli (p < 0.01, R2 = - 052; p < 0.01, R2 = - 0.055). However, there was a strong correlation between Zn and biometrical factors in hepatopancreas samples of both species. The comparison of metal concentrations with standards revealed that only Cd levels in S. pharaonis exceeded the ESFA and WHO standards, whereas other metals were below the standards.


Assuntos
Metais Pesados , Selênio , Sepia , Poluentes Químicos da Água , Humanos , Animais , Zinco/análise , Cádmio/análise , Oceano Índico , Hepatopâncreas/química , Irã (Geográfico) , Poluentes Químicos da Água/análise , Metais , Decapodiformes , Músculos/química , Monitoramento Ambiental , Metais Pesados/análise
3.
Fish Shellfish Immunol ; 144: 109265, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040138

RESUMO

Skin ulceration syndrome (SUS) is becoming a severe problem in the breeding and culturing process of the cuttlefish Sepia pharaonis. However, limited knowledge is available about the occurrence of this devastating disease. In this study, proteomic analysis was used to identify the differentially expressed proteins (DEPs) and the biological pathways enriched in SUS-diseased S. pharaonis. Both the healthy group and diseased group were analyzed in triplicate, with 4 cuttlefish in each replicate. The results showed that 85 DEPs were identified between the two groups, including 36 upregulated proteins and 49 downregulated proteins in the diseased group compared to the healthy group. GO enrichment analysis revealed that the DEPs were mainly enriched in cellular component organization or biogenesis, nucleus and ion binding processes. The results of the KEGG pathway analysis indicated that extracellular matrix (ECM)-receptor interaction was the most enriched upregulated pathway. Real-time reverse transcriptase PCR was used to identify the expression of two differentially expressed matrix metalloproteinases (MMPs), and the results showed that the mRNA expression of MMP14 and MMP19 was significantly upregulated in the skin tissue of the diseased group. Furthermore, the protease activity of the diseased group was higher than that of the healthy group. Our results offer basic knowledge on the changes in protein profiles during the occurrence of SUS in the cuttlefish S. pharaonis.


Assuntos
Sepia , Úlcera Cutânea , Animais , Decapodiformes , Proteômica
4.
Fish Shellfish Immunol ; 143: 109230, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977542

RESUMO

Copper (Cu) and Cadmium (Cd), prevalent heavy metals in marine environments, have known implications in oxidative stress, immune response, and toxicity in marine organisms. Sepia esculenta, a cephalopod of significant economic value along China's eastern coastline, experiences alterations in growth, mobility, and reproduction when subjected to these heavy metals. However, the specific mechanisms resulting from heavy metal exposure in S. esculenta remain largely uncharted. In this study, we utilized transcriptome and four oxidative, immunity, and toxicity indicators to assess the toxicological mechanism in S. esculenta larvae exposed to Cu and Cd. The measurements of Superoxide Dismutase (SOD), Malondialdehyde (MDA), Glutathione S-Transferase (GST), and Metallothioneins (MTs) revealed that Cu and Cd trigger substantial oxidative stress, immune response, and metal toxicity. Further, we performed an analysis on the transcriptome data through Weighted Gene Co-expression Network Analysis (WGCNA) and Protein-Protein Interaction (PPI) network analysis. Our findings indicate that exposure methods and duration influence the type and the extent of toxicity and oxidative stress within the S. esculenta larvae. We took an innovative approach in this research by integrating WGCNA and PPI network analysis with four significant physiological indicators to closely examine the toxicity and oxidative stress profiles of S. esculenta upon exposure to Cu and Cd. This investigation is vital in decoding the toxicological, immunological, and oxidative stress mechanisms within S. esculenta when subjected to heavy metals. It provides foundational insights capable of advancing invertebrate environmental toxicology and informs S. esculenta artificial breeding practices.


Assuntos
Metais Pesados , Sepia , Animais , Cobre/toxicidade , Cádmio/toxicidade , Sepia/metabolismo , Antioxidantes/metabolismo , Redes Reguladoras de Genes , Larva/genética , Larva/metabolismo , Estresse Oxidativo , Metais Pesados/toxicidade , Imunidade
5.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37655637

RESUMO

Cuttlefish swim using jet propulsion, taking a small volume of fluid into the mantle cavity before it is expelled through the siphon to generate thrust. Jet propulsion swimming has been shown to be more metabolically expensive than undulatory swimming, which has been suggested to be due to the lower efficiency of jet propulsion. The whole-cycle propulsive efficiency of cephalopod molluscs ranges from 38 to 76%, indicating that in some instances jet propulsion can be relatively efficient. Here, we determined the hydrodynamics of hatchling and juvenile cuttlefish during jet propulsion swimming to understand the characteristics of their jets, and whether their whole-cycle propulsive efficiency changes during development. Cuttlefish were found to utilise two jet types: isolated jet vortices (termed jet mode I) and elongated jets (leading edge vortex ring followed by a trailing jet; termed jet mode II). The use of these jet modes differed between the age classes, with newly hatched animals nearly exclusively utilising mode I jets, while juveniles showed no strong preferences. Whole-cycle propulsive efficiency was found to be high, ranging from 72 to 80%, and did not differ between age classes. During development, Strouhal number decreased as Reynolds number increased, which is consistent with animals adjusting their jetting behaviour in order to maximise whole-cycle propulsive efficiency and locomotor performance. Although jet propulsion swimming can have a relatively high energetic cost, in cuttlefish and nautilus, both neutrally buoyant species, the whole-cycle propulsive efficiency is actually relatively high.


Assuntos
Decapodiformes , Sepia , Animais , Natação , Hidrodinâmica , Fenômenos Biomecânicos
6.
BMC Genomics ; 24(1): 503, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649007

RESUMO

BACKGROUND: Cadmium (Cd) flows into the ocean with industrial and agricultural pollution and significantly affects the growth and development of economic cephalopods such as Sepia esculenta, Amphioctopus fangsiao, and Loligo japonica. As of now, the reasons why Cd affects the growth and development of S. esculenta are not yet clear. RESULTS: In this study, transcriptome and four oxidation and toxicity indicators are used to analyze the toxicological mechanism of Cd-exposed S. esculenta larvae. Indicator results indicate that Cd induces oxidative stress and metal toxicity. Functional enrichment analysis results suggest that larval ion transport, cell adhesion, and some digestion and absorption processes are inhibited, and the cell function is damaged. Comprehensive analysis of protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore S. esculenta larval toxicological mechanisms, and we find that among the 20 identified key genes, 14 genes are associated with neurotoxicity. Most of them are down-regulated and enriched to the neuroactive ligand-receptor interaction signaling pathway, suggesting that larval nervous system might be destroyed, and the growth, development, and movement process are significantly affected after Cd exposure. CONCLUSIONS: S. esculenta larvae suffered severe oxidative damage after Cd exposure, which may inhibit digestion and absorption functions, and disrupt the stability of the nervous system. Our results lay a function for understanding larval toxicological mechanisms exposed to heavy metals, promoting the development of invertebrate environmental toxicology, and providing theoretical support for S. esculenta artificial culture.


Assuntos
Sepia , Animais , Sepia/genética , Decapodiformes , Agricultura , Cádmio/toxicidade , Larva/genética
7.
Nature ; 619(7968): 122-128, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380772

RESUMO

Many cephalopods escape detection using camouflage1. This behaviour relies on a visual assessment of the surroundings, on an interpretation of visual-texture statistics2-4 and on matching these statistics using millions of skin chromatophores that are controlled by motoneurons located in the brain5-7. Analysis of cuttlefish images proposed that camouflage patterns are low dimensional and categorizable into three pattern classes, built from a small repertoire of components8-11. Behavioural experiments also indicated that, although camouflage requires vision, its execution does not require feedback5,12,13, suggesting that motion within skin-pattern space is stereotyped and lacks the possibility of correction. Here, using quantitative methods14, we studied camouflage in the cuttlefish Sepia officinalis as behavioural motion towards background matching in skin-pattern space. An analysis of hundreds of thousands of images over natural and artificial backgrounds revealed that the space of skin patterns is high-dimensional and that pattern matching is not stereotyped-each search meanders through skin-pattern space, decelerating and accelerating repeatedly before stabilizing. Chromatophores could be grouped into pattern components on the basis of their covariation during camouflaging. These components varied in shapes and sizes, and overlay one another. However, their identities varied even across transitions between identical skin-pattern pairs, indicating flexibility of implementation and absence of stereotypy. Components could also be differentiated by their sensitivity to spatial frequency. Finally, we compared camouflage to blanching, a skin-lightening reaction to threatening stimuli. Pattern motion during blanching was direct and fast, consistent with open-loop motion in low-dimensional pattern space, in contrast to that observed during camouflage.


Assuntos
Comportamento Animal , Meio Ambiente , Sepia , Pigmentação da Pele , Animais , Comportamento Animal/fisiologia , Sepia/fisiologia , Pigmentação da Pele/fisiologia
8.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37336591

RESUMO

Melanins represent a diverse collection of pigments with a variety of structures and functions. One class of melanin, eumelanin, is recognizable to most as the source of the dark black color found in cephalopod ink. Sepia officinalis is the most well-known and sought-after source of non-synthetic eumelanin, but its harvest is limited by the availability of cuttlefish, and its extraction from an animal source brings rise to ethical concerns. In recent years, these limitations have become more pressing as more applications for eumelanin are developed-particularly in medicine and electronics. This surge in interest in the applications of eumelanin has also fueled a rise in the interest of alternative, bio-catalyzed production methods. Many culinarily-utilized fungi are ideal candidates in this production scheme, as examples exist which have been shown to produce eumelanin, their growth at large scales is well understood, and they can be cultivated on recaptured waste streams. However, much of the current research on the fungal production of eumelanin focuses on pathogenic fungi and eumelanin's role in virulence. In this paper, we will review the potential for culinary fungi to produce eumelanin and provide suggestions for new research areas that would be most impactful in the search for improved fungal eumelanin producers.


Assuntos
Melaninas , Sepia , Animais , Melaninas/química
9.
Curr Biol ; 33(13): 2794-2801.e3, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343557

RESUMO

The coleoid cephalopods (cuttlefish, octopus, and squid) are a group of soft-bodied marine mollusks that exhibit an array of interesting biological phenomena, including dynamic camouflage, complex social behaviors, prehensile regenerating arms, and large brains capable of learning, memory, and problem-solving.1,2,3,4,5,6,7,8,9,10 The dwarf cuttlefish, Sepia bandensis, is a promising model cephalopod species due to its small size, substantial egg production, short generation time, and dynamic social and camouflage behaviors.11 Cuttlefish dynamically camouflage to their surroundings by changing the color, pattern, and texture of their skin. Camouflage is optically driven and is achieved by expanding and contracting hundreds of thousands of pigment-filled saccules (chromatophores) in the skin, which are controlled by motor neurons emanating from the brain. We generated a dwarf cuttlefish brain atlas using magnetic resonance imaging (MRI), deep learning, and histology, and we built an interactive web tool (https://www.cuttlebase.org/) to host the data. Guided by observations in other cephalopods,12,13,14,15,16,17,18,19,20 we identified 32 brain lobes, including two large optic lobes (75% the total volume of the brain), chromatophore lobes whose motor neurons directly innervate the chromatophores of the color-changing skin, and a vertical lobe that has been implicated in learning and memory. The brain largely conforms to the anatomy observed in other Sepia species and provides a valuable tool for exploring the neural basis of behavior in the experimentally facile dwarf cuttlefish.


Assuntos
Cromatóforos , Sepia , Animais , Sepia/fisiologia , Decapodiformes , Encéfalo , Cromatóforos/fisiologia , Pigmentação da Pele
10.
J Struct Biol ; 215(3): 107988, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37364762

RESUMO

Structural biological hard tissues fulfill diverse tasks: protection, defence, locomotion, structural support, reinforcement, buoyancy. The cephalopod mollusk Spirula spirula has a planspiral, endogastrically coiled, chambered, endoskeleton consisting of the main elements: shell-wall, septum, adapical-ridge, siphuncular-tube. The cephalopod mollusk Sepia officinalis has an oval, flattened, layered-cellular endoskeleton, formed of the main elements: dorsal-shield, wall/pillar, septum, siphuncular-zone. Both endoskeletons are light-weight buoyancy devices that enable transit through marine environments: vertical (S. spirula), horizontal (S. officinalis). Each skeletal element of the phragmocones has a specific morphology, component structure and organization. The conjunction of the different structural and compositional characteristics renders the evolved nature of the endoskeletons and facilitates for Spirula frequent migration from deep to shallow water and for Sepia coverage over large horizontal distances, without damage of the buoyancy device. Based on Electron-Backscatter-Diffraction (EBSD) measurements and TEM, FE-SEM, laser-confocal-microscopy imaging we highlight for each skeletal element of the endoskeleton its specific mineral/biopolymer hybrid nature and constituent arrangement. We demonstrate that a variety of crystal morphologies and biopolymer assemblies are needed for enabling the endoskeleton to act as a buoyancy device. We show that all organic components of the endoskeletons have the structure of cholesteric-liquid-crystals and indicate which feature of the skeletal element yields the necessary mechanical property to enable the endoskeleton to fulfill its function. We juxtapose structural, microstructural, texture characteristics and benefits of coiled and planar endoskeletons and discuss how morphometry tunes structural biomaterial function. Both mollusks use their endoskeleton for buoyancy regulation, live and move, however, in distinct marine environments.


Assuntos
Cefalópodes , Sepia , Animais , Moluscos , Sepia/anatomia & histologia , Decapodiformes
11.
Ecotoxicol Environ Saf ; 256: 114894, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059015

RESUMO

Tributyltin (TBT) is a typical organic pollutant that persists in aquatic sediments due to its wide usage as an antifouling fungicide during the past few decades. Despite increased awareness of the serious negative consequences of TBT on aquatic species, studies on the effects of TBT exposure on cephalopod embryonic development and juvenile physiological performance are scarce. To investigate the lasting effects of TBT toxicity on Sepia pharaonis from embryo to hatchling, embryos (gastrula stage, 3-5 h post fertilization) were exposed to four levels of TBT until hatching: 0 (control), 30 (environmental level), 60, and 120 ng/L. Subsequently, juvenile growth performance endpoints and behavioral alterations were assessed over 15 days post-hatching. Egg hatchability was significantly reduced and embryonic development (i.e., premature hatching) was accelerated in response to 30 ng/L TBT exposure. Meanwhile, TBT-induced alterations in embryonic morphology primarily included yolk-sac lysis, embryonic malformations, and uneven pigment distributions. During the pre-middle stage of embryonic development, the eggshell serves as an effective barrier to safeguard the embryo from exposure to 30-60 ng/L TBT, according to patterns of TBT accumulation and distribution in the egg compartment. However, even environmental relevant levels of TBT (30 ng/L) exposure during embryonic development had a negative impact on juvenile behavior and growth, including slowing growth, shortening eating times, causing more irregular movements, and increasing inking times. These findings indicate that after TBT exposure, negative long-lasting effects on S. pharaonis development from embryo to hatchling persist, suggesting that long-lasting toxic effects endure from S. pharaonis embryos to hatchlings.


Assuntos
Sepia , Compostos de Trialquitina , Poluentes Químicos da Água , Animais , Decapodiformes , Bioacumulação , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/toxicidade
12.
Aquat Toxicol ; 258: 106478, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905919

RESUMO

With extensive use of plastic products, microplastics (MPs, < 5 mm) and nanoplastics (NPs, < 1 µm) have become major pollutants in ecosystem, especially in marine environment. In recent years, researches on the impact of NPs on organisms have gradually increased. However, studies on the influence of NPs on cephalopods are still limited. Golden cuttlefish (Sepia esculenta), an important economic cephalopod, is a shallow marine benthic organism. In this study, the effect of acute exposure (4 h) to 50-nm polystyrene nanoplastics (PS-NPs, 100 µg/L) on the immune response of S. esculenta larvae was analyzed via transcriptome data. A total of 1260 DEGs were obtained in the gene expression analysis. The analyses of GO, KEGG signaling pathway enrichment, and protein-protein interaction (PPI) network were then performed to explore the potential molecular mechanisms of the immune response. Finally, 16 key immune-related DEGs were obtained according to the number of KEGG signaling pathways involved and the PPI number. This study not only confirmed that NPs had an impact on cephalopod immune response, but also provided novel insights for further unmasking the toxicological mechanisms of NPs.


Assuntos
Sepia , Poluentes Químicos da Água , Animais , Poliestirenos , Sepia/genética , Plásticos , Larva , Microplásticos , Ecossistema , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos
13.
Chemosphere ; 325: 138315, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36889469

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants (POPs) commonly found in marine environments. Their bioaccumulation can cause harm to aquatic organisms, including invertebrates, particularly during the early stages of embryonic development. In this study, we evaluated, for the first time, the patterns of PAH accumulation in both capsule and embryo of common cuttlefish (Sepia officinalis). In addition, we explored the effects of PAHs by analysing the expression profiles of seven homeobox genes [i.e., gastrulation brain homeobox (GBX), paralogy group labial/Hox1 (HOX1), paralogy group Hox3 (HOX3), dorsal root ganglia homeobox (DRGX), visual system homeobox (VSX), aristaless-like homeobox (ARX) and LIM-homeodomain transcription factor (LHX3/4)]. We found that PAH levels in egg capsules were higher than those observed in chorion membranes (35.1 ± 13.3 ng/g vs 16.4 ± 5.9 ng/g). Furthermore, PAHs were also found in perivitellin fluid (11.5 ± 5.0 ng/ml). Naphthalene and acenaphthene were the congeners present at highest concentrations in each analysed egg component suggesting higher bioaccumulation rates. Embryos with high concentrations of PAHs also showed a significant increase in mRNA expression for each of the analysed homeobox genes. In particular, we observed a 15-fold increase in the ARX expression levels. Additionally, the statistically significant variation in homeobox gene expression patterns was accompanied by a concomitant increase in mRNA levels of both aryl hydrocarbon receptor (AhR) and estrogen receptor (ER). These findings suggest that bioaccumulation of PAHs may modulate developmental processes of cuttlefish embryos by targeting homeobox gene-mediated transcriptional outcomes. Mechanisms underlying the upregulation of homeobox genes could be related to the ability of PAHs to directly activate AhR- or ER-related signaling pathways.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Sepia , Animais , Genes Homeobox , Sepia/genética , Sepia/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Decapodiformes , Expressão Gênica , Desenvolvimento Embrionário , RNA Mensageiro
14.
J Cardiovasc Electrophysiol ; 34(3): 583-592, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640436

RESUMO

INTRODUCTION: Safety of pulmonary vein isolation (PVI) has been established in clinical studies. However, despite prevention efforts the incidence of damage to (peri)-esophageal tissue has not decreased, and the pathophysiology is incompletely understood. Damage to vagal nerve branches may be involved in lesion progression to atrio-esophageal fistula. Using electrogastrography, we assessed the incidence of periesophageal vagal nerve injury (VNI) following atrial fibrillation ablation and its association with procedural parameters and endoscopic results. METHODS: Patients were studied using electrogastrography, endoscopy, and endoscopic ultrasound before and after cryoballoon (CB) or radiofrequency (RF) PVI. The incidence of ablation-induced neuropathic pattern (indicating VNI) in pre- and postprocedural electrogastrography was assessed and correlated with endoscopic results and ablation data. RESULTS: Between February 2021 und January 2022, 85 patients (67 ± 10 years, 53% male) were included, 33 were treated with CB and 52 with RF (38 with moderate power moderate duration [25-30 W] and 14 with high power short duration [50 W]). Ablation-induced VNI was detected in 27/85 patients independent of the energy form. Patients with VNI more frequently had postprocedural endoscopically detected pathology (8% mucosal esophageal lesions, 36% periesophageal edema, 33% food retention) but there was incomplete overlap. Pre-existing esophagitis increased the likelihood of VNI. Ablation data and esophageal temperature data did not predict VNI. CONCLUSION: PVI-induced VNI is quite common and independent of ablation energy source. VNI is part of (peri)-esophageal damage and only partially overlaps with endoscopic findings. VNI-associated acidic reflux may be involved in the complex pathophysiology of esophageal lesion progression to fistula.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Criocirurgia , Fístula Esofágica , Veias Pulmonares , Sepia , Traumatismos do Nervo Vago , Humanos , Masculino , Animais , Feminino , Fibrilação Atrial/cirurgia , Veias Pulmonares/cirurgia , Fístula Esofágica/etiologia , Traumatismos do Nervo Vago/etiologia , Traumatismos do Nervo Vago/cirurgia , Criocirurgia/efeitos adversos , Ablação por Cateter/efeitos adversos , Resultado do Tratamento , Recidiva
15.
Fish Shellfish Immunol ; 132: 108477, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36494033

RESUMO

Marine organisms are threatened by various environmental contaminants, and nanoplastics (NPs) is one of the most concerned. Studied have shown that NPs has a certain impact on marine organisms, but the specific molecular mechanism is still unclear. At present, researches on the effect of NPs on marine life mostly focus on crustaceans, gastropods, and bivalves. In this study, cephalopod Sepia esculenta larvae were first used to investigate the potential immune response molecular mechanisms caused by PS-NPs (50 nm, 50 mg/L) short-term exposure (4 and 24 h). Through S. esculenta larvae transcriptome profile of gene expression analysis, 548 and 1990 genes showed differential expression at 4 and 24 h after NPs exposure, respectively. GO and KEGG enrichment analysis were performed to find immune related DEGs. Then, the interaction relationship between the immune related DEGs after NPs exposure was known through the constructed protein-protein interaction network. 20 hub genes were found on the base of KEGG pathway numbers involved and protein-protein interaction numbers. This research supply valuable genes for the study of cephalopod immune response caused by NPs, which can help us further uncover the molecular mechanisms of organism against NPs.


Assuntos
Sepia , Poluentes Químicos da Água , Animais , Larva/metabolismo , Sepia/genética , Sepia/metabolismo , Microplásticos , Transcriptoma , Perfilação da Expressão Gênica , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
16.
Fish Shellfish Immunol ; 132: 108494, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36565999

RESUMO

As a well-known marine metal element, Cd can significantly affect bivalve mollusk life processes such as growth and development. However, the effects of Cd on the molecular mechanisms of the economically important cephalopod species Sepia esculenta remain unclear. In this study, S. esculenta larval immunity exposed to Cd is explored based on RNA-Seq. The analyses of GO, KEGG, and protein-protein interaction (PPI) network of 1,471 differentially expressed genes (DEGs) reveal that multiple immune processes are affected by exposure such as inflammatory reaction and cell adhesion. Comprehensive analyses of KEGG signaling pathways and the PPI network are first used to explore Cd-exposed S. esculenta larval immunity, revealing the presence of 16 immune-related key and hub genes involved in exposure response. Results of gene and pathway functional analyses increase our understanding of Cd-exposed S. esculenta larval immunity and improve our overall understanding of mollusk immune functions.


Assuntos
Sepia , Animais , Sepia/genética , Decapodiformes/genética , Larva/genética , Cádmio/toxicidade , Transcriptoma , Perfilação da Expressão Gênica/veterinária , Imunidade/genética , Biologia Computacional/métodos
17.
Zoolog Sci ; 39(6): 545-553, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36495489

RESUMO

Predator-prey interactions based on laterality have recently been observed between fishes and their prey populations. Maintenance of antisymmetric dimorphism by frequency-dependent selection has been reported in fish, but has not been observed in invertebrates. Over 10 years, we investigated long-term changes in the "ratio of laterality" (frequency of righty morphs in a population) in the cuttlefish Sepia recurvirostra and its potential prey prawns Penaeus semisulcatus and Metapenaeus endeavouri in the Visayan Sea, the Philippines. The morphological laterality of cuttlefish and prey prawns was defined by measuring the asymmetry of the cuttlebone and carapace, respectively. Cuttlefish and prey prawns showed morphological antisymmetry, being composed with righty morphs and lefty morphs. The ratio of laterality of cuttlefish and one prey prawn oscillated significantly, but the oscillation was not strongly synchronized. The ratio of laterality of cuttlefish followed that of the prey prawn, indicating that predation biased to each laterality occurred in relation to their laterality. These results suggest that the lateral dimorphism of cuttlefish is maintained through frequency-dependent selection on lateral morphs of the predator cuttlefish and prey prawns. Our findings provide new insight into the ecological significance and antisymmetry maintenance mechanism in relation to interspecific interactions in marine invertebrates.


Assuntos
Decápodes , Sepia , Animais , Decapodiformes , Lateralidade Funcional , Peixes/anatomia & histologia , Comportamento Predatório
18.
J Exp Biol ; 225(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416079

RESUMO

The circular muscles surrounding the mantle cavity of European cuttlefish (Sepia officinalis) generate the mechanical power to compress the cavity, forcing a jet of water out of the funnel, propelling the animal during jet propulsion swimming. During ontogeny, jetting frequency decreases in adults compared with juveniles, and this is expected to be reflected in the contractile properties of the locomotory muscles. To develop greater insight into how the locomotion of these animals is powered during ontogeny, we determined the mechanical properties of bundles of muscle fascicles during isometric, isotonic and cyclic length changes in vitro, at two life stages: juveniles and adults. The twitch kinetics were faster in juveniles than in adults (twitch rise time 257 ms compared with 371 ms; half-twitch relaxation 257 ms compared with 677 ms in juveniles and adults, respectively); however, twitch and tetanic stress, the maximum velocity of shortening and curvature of the force-velocity relationship did not differ. Under cyclic conditions, net power exhibited an inverted U-shaped relationship with cycle frequency in both juveniles and adults; the frequency at which maximum net power was achieved was shifted to lower cycle frequencies with increased maturity, which is consistent with the slower contraction and relaxation kinetics in adults compared with juveniles. The cycle frequency at which peak power was achieved during cyclical contractions in vitro was found to match that seen in vivo in juveniles, suggesting power is being maximised during jet propulsion swimming.


Assuntos
Sepia , Animais , Fenômenos Biomecânicos , Decapodiformes/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia
19.
Front Immunol ; 13: 963931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211441

RESUMO

Sepia esculenta is a popular economic cephalopod with high yield, delicious meat, and rich nutrition. With the rapid development of heavy industry and medical industry, a large amount of waste has been released into the ocean recklessly in recent years, inducing a significant increase in the content of heavy metals, especially cadmium (Cd) and copper (Cu), in the ocean. This phenomenon significantly affects the growth and development of S. esculenta, causing a serious blow to its artificial breeding. In this study, transcriptome analysis is used to initially explore immune response mechanisms of Cd and Cu co-exposed juvenile S. esculenta. The results show that 1,088 differentially expressed genes (DEGs) are identified. And DEGs functional enrichment analysis results suggests that co-exposure may promote inflammatory and innate immune responses in juvenile S. esculenta. Fifteen key genes that might regulate the immunity of S. esculenta are identified using protein-protein interaction (PPI) network and KEGG enrichment analyses, of which the three genes with the highest number of interactions or involve in more KEGG pathways are identified as hub genes that might significantly affect the immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway is used for the first time to explore co-exposed S. esculenta juvenile immune response processes. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide a valuable resource for further understanding of mollusk immunity.


Assuntos
Sepia , Animais , Cádmio/toxicidade , Cobre , Decapodiformes/genética , Perfilação da Expressão Gênica , Imunidade/genética , Sepia/genética , Transcriptoma
20.
Acta Biomater ; 154: 312-323, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36184057

RESUMO

Cuttlebone, the endoskeleton of cuttlefish, offers an intriguing biological structural model for designing low-density cellular ceramics with high stiffness and damage tolerance. Cuttlebone is highly porous (porosity ∼93%) and lightweight (density less than 20% of seawater), constructed mainly by brittle aragonite (95 wt%), but capable of sustaining hydrostatic water pressures over 20 atmospheres and exhibits energy absorption capability under compression comparable to many metallic foams (∼4.4 kJ/kg). In this work, we computationally investigate how such remarkable mechanical efficiency is enabled by the multiscale structure of cuttlebone. Using the common cuttlefish, Sepia Officinalis, as a model system, we first conducted high-resolution synchrotron micro-computed tomography (µ-CT) and quantified the cuttlebone's multiscale geometry, including the 3D asymmetric shape of individual walls, the wall assembly patterns, and the long-range structural gradient of walls across the entire cuttlebone (ca. 38 chambers). The acquired 3D structural information enables systematic finite-element simulations, which further reveal the multiscale mechanical design of cuttlebone: at the wall level, wall asymmetry provides optimized energy absorption while maintaining high structural stiffness; at the chamber level, variation of walls (number, pattern, and waviness amplitude) contributes to progressive damage; at the entire skeletal level, the gradient of chamber heights tailors the local mechanical anisotropy of the cuttlebone for reduced stress concentration. Our results provide integrated insights into understanding the cuttlebone's multiscale mechanical design and provide useful knowledge for the designs of lightweight cellular ceramics. STATEMENT OF SIGNIFICANCE: Cuttlebone has been demonstrated to be a biological ceramic cellular material with remarkable lightweight, high stiffness and energy absorption. However, our knowledge on how such mechanical properties are enabled by cuttlebone's multiscale structure is not complete. Here, we combine systematic tomography-based 3D structural analysis and finite-element simulations to reveal how the hierarchical structure of cuttlebone at multiple length scales synergistically contribute to cuttlebone's impressive mechanical efficiency. These findings have important implications for designing biomimetic low-density cellular ceramic materials.


Assuntos
Materiais Biomiméticos , Sepia , Animais , Microtomografia por Raio-X , Porosidade , Materiais Biomiméticos/química , Cerâmica , Decapodiformes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...